报告摘要

医学影像设备是利用各种不同媒介作为信息载体，将人体内部结构重组为影像的各种仪器。其影像信息与人体实际结构有着空间和时间分布上的对应关系。医学影像设备可分为大型医学影像设备和其他医学影像设备。大型医学影像设备主要包括 X 线成像类、计算机断层扫描、磁共振成像和核医学类，其他影像设备主要包括超声成像设备和医用内镜。受益于第三方医学影像中心发展、居民支付能力提升、医学影像技术进步等因素，中国医学影像设备行业持续增长，预计到 2023 年，中国医学影像设备行业市场规模将达到 1,113 亿元。

热点一：第三方医学影像中心催生新机遇

国家颁布一系列政策支持第三方医学影像中心发展。“分级诊疗”制度的实施催生基层医疗机构医学影像服务需求，第三方医学影像中心凭借医生资源与设备优势，提高基层医疗机构服务水平。基层医疗机构医学影像诊断需求的增加将扩大第三方医学影像中心市场。

热点二：技术进步助力研发制造

技术进步是医学影像设备行业发展的核心驱动力。高端医学影像技术的发展可以满足重大疾病超早期诊断的需求。在国家政策支持下，本土企业逐步攻破各项核心技术，在高端医学影像技术上不断取得创新性突破。同时，人工智能助力产业升级。人工智能医学影像对比传统医学影像优势明显，伴随相关技术成熟与应用场景落地，人工智能医学影像行业发展前景广阔。

热点三：生产商业务向产业链下游拓展

医学影像设备下游服务市场仍旧是一片蓝海，成长性极强。未来，相关企业将不断向产业链下游拓展。中国医学影像设备行业在医保控费等政策的压力下，盈利空间受到压缩。器械设备厂商利用其在影像技术、远程影像平台建设以及医院医生资源等方面的优势，积极向产业链下游延伸，通过进入远程影像诊断与第三方医学影像中心领域提供诊断服务，有利于扩大业务面、提升盈利水平。
目录

1 方法论.. 6
 1.1 研究方法 ... 6
 1.2 名词解释 ... 7

2 中国医学影像设备行业市场综述 .. 9
 2.1 医学影像设备定义与分类 .. 9
 2.2 中国医学影像设备行业发展历程 .. 12
 2.3 中国医学影像设备行业市场规模 .. 13
 2.4 中国医学影像设备行业产业链分析 ... 15
 2.4.1 上游分析 ... 15
 2.4.2 下游分析 ... 16

3 中国医学影像设备行业驱动因素分析 .. 18
 3.1 第三方医学影像中心催生新机遇 .. 18
 3.2 收入增长与医保覆盖提升支付能力 ... 19
 3.3 技术进步助力研发制造 .. 21

4 中国医学影像设备行业制约因素分析 .. 23
 4.1 行业总体研发投入不足，企业竞争力弱 ... 23
 4.2 市场准入标准高，国产设备购买动力不足 ... 24

5 中国医学影像设备行业相关政策分析 .. 26

6 中国医学影像设备行业发展趋势分析 .. 28
 6.1 政策推动国产设备占比上升 .. 28
 6.2 盈利受限下生产商业务向产业链下游拓展 ... 29
6.3 人工智能助力产业升级 .. 31

7 中国医学影像设备行业竞争格局分析 .. 33

7.1 中国医学影像设备行业竞争格局概述 .. 33

7.2 中国医学影像设备行业投资企业推荐 ... 37

7.2.1 上海联影医疗科技有限公司 ... 37

7.2.2 东软医疗系统有限公司 ... 38

7.2.3 推想科技有限公司 .. 40
图表目录

图 2-1 医学影像设备分类.. 9
图 2-2 部分医学影像设备对比 .. 10
图 2-3 人体主要器官、部位影像检查手段.. 11
图 2-4 中国医学影像设备行业发展历程.. 12
图 2-5 中国医学影像设备行业市场规模，2014-2023 年预测 13
图 2-6 中国医学影像设备行业产业链 .. 15
图 2-7 中国第三方医学影像中心行业市场规模，2016-2022 年预测 19
图 2-8 居民人均可支配收入、人均消费支出与人均医疗保健消费支出，2014-2018 年 ... 19
图 2-9 部分医学影像检查项目收费 .. 20
图 2-10 医学影像技术发展历程 ... 21
图 2-11 深圳先进技术研究院医学影像创新研究成果 ... 22
图 3-1 医疗设备企业研发支出及占比，2018 年 .. 23
图 3-2 医学影像设备管理标准分类 .. 25
图 3-3 甲医院医学影像诊断痛点 .. 27
图 3-4 远程医学影像诊断对传统医学影像诊断的提升与改善 30
图 3-5 人工智能医学影像相较于传统医学影像的优势 ... 32
图 3-6 人工智能医学影像融资状况 .. 33
图 7-1 医学影像设备各细分领域概况
... 34

图 7-2 上海联影主要产品
... 37

图 7-3 上海联影与高校合作项目
... 38

图 7-4 东软医疗主要产品
... 39

图 7-5 推想科技主要产品
... 41
1 方法论

1.1 研究方法

头豹研究院布局中国市场，深入研究10大行业，54个垂直行业的市场变化，已经积累了近50万行业研究样本，完成近10,000多个独立的研究咨询项目。

研究院依托中国活跃的经济环境，从生物技术、医疗器械、医疗服务等领域着手，研究内容覆盖整个行业的发展周期，伴随着行业中企业的创立，发展，扩张，到企业走向上市及上市后的成熟期，研究院的各行业研究员探索和评估行业中多变的产业模式，企业的商业模式和运营模式，以专业的视野解读行业的沿革。

研究院融合传统与新型的研究方法，采用自主研发的算法，结合行业交叉的大数据，以多元化的调研方法，挖掘定量数据背后的逻辑，分析定性内容背后的观点，客观和真实地阐述行业的现状，前瞻性地预测行业未来的发展趋势，在研究院的每一份研究报告中，完整地呈现行业的过去，现在和未来。

研究院密切关注行业发展最新动向，报告内容及数据会随着行业发展、技术革新、竞争格局变化、政策法规颁布、市场调研深入、保持不断更新与优化。

研究院秉承匠心研究，砥砺前行的宗旨，从战略的角度分析行业，从执行的层面阅读行业，为每一个行业的报告阅读者提供值得品鉴的研究报告。

头豹研究院此次研究于2019年10月完成。
1.2 名词解释

- "分级诊疗"：2015年9月8日，国务院办公厅发布《关于推进分级诊疗制度建设的指导意见》，制度内涵为"基层首诊、双向转诊、急慢分治、上下联动"的"分级诊疗"模式，引导优质医疗资源下沉，形成科学合理就医秩序。

- CR: Computed Radiography，计算机X线摄影，计算机数字图像处理技术与X射线放射技术相结合形成的一种X线机。

- DR: Digital Radiography，数字X线摄影，以影像增强管为信息载体，接受透过人体的X线信息，经视频摄像机采集后转换为数字信号，再进行数字化的X线机。

- CT: Computed Tomography，电子计算机断层扫描。利用精确准直的X线束、γ射线、超声波等，与灵敏度极高的探测器一同对人体某部一定厚度的层面进行扫描。

- MRI: Magnetic Resonance Imaging，磁共振成像，利用静磁场和射频磁场使人体组织成像。

- PET: Positron Emission Computed Tomography，正电子发射型计算机断层显像，将某种物质，一般是生物生命代谢中必须的物质标记上短寿命的放射性核素，注入人体后，通过对该物质在代谢中的聚集反映生命代谢活动的情况，从而达到诊断的目的。

- PET-CT：正电子发射计算机断层显像仪PET和电子计算机断层扫描CT有机结合在一起，使用同一个检查床和同一个图像处理工作站，将PET图像和CT图像融合，同时反映病灶的病理生理变化和形态结构。

- PET-MR: 正电子发射计算机断层显像仪PET和核磁共振成像术MR结合一体化组合成的大型功能代谢与分子影像诊断设备，同时具有PET和MR的检查功能。

- DSA: Digital Subtraction Angiography，数字减影血管造影机，一种新型的X线成像系统，将注入造影剂前后拍摄的两帧X线图像经数字化输入图像计算机，通过减影、
增强和再成像过程来获得清晰的纯血管影像。

- **分子影像**: 运用影像学手段显示组织水平、细胞和亚细胞水平的特定分子，反映活体状态下分子水平变化，对其生物学行为在影像方面进行定性和定量研究的科学。
2 中国医学影像设备行业市场综述

2.1 医学影像设备定义与分类

医学影像学（Medical Imaging）是研究借助某种介质（如 X 射线、电磁场、超声波等）与人体相互作用，将人体内部组织器官结构、密度以影像方式表现，供诊断医师根据影像提供的信息进行判断，从而对人体健康状况进行评价的一门科学。

医学影像设备是利用各种不同媒介作为信息载体，将人体内部结构重现为影像的各种仪器，其影像信息与人体实际结构有着空间和时间分布上的对应关系。医学影像设备的发展，经历了从放射诊断到影像诊断，再到影像信息综合分析诊断的过程。

医学影像设备可分为大型医学影像设备和其他医学影像设备。大型影像诊断设备主要包括 X 线成像类（CR、DR、DSA 等）、计算机断层扫描（CT）、磁共振成像（MRI）和核医学类（PET-CT、PET-MR 等），其他影像设备主要包括超声成像设备和医用内镜（见图 2-1）。

图 2-1 医学影像设备分类
X 线成像：根据人体不同组织对 X 线吸收程度存在差异的原理进行成像。X 线图像可以直观地显示人体骨骼和脏器相关形态。X 线图像显示的是人体内部器官的重叠影像。

计算机断层扫描 (CT)：与 X 线成像原理相同。CT 与 X 线成像的最大区别在于利用精确准直的 X 线束、γ 射线、超声波等，与灵敏度极高的探测器围绕人体的某一部位作一个接一个的断面扫描，通过计算机系统最后形成灰阶图像。

磁共振成像 (MRI)：利用静磁场和射频磁场使人体组织成像。人体含水比例高是磁共振成像技术被广泛应用的基础。MRI 主要对氢核的磁共振效应成像，很多疾病的病理过程会导致水分形态的变化，进而可由磁共振图像反应出来。

核医学成像：根据辐射断层扫描原理成像。核医学影像子功能性影像，不取决于组织的密度变化，而是取决于脏器或组织的血流、细胞功能、细胞数量、代谢活性和排泄引流情况等因素。受检者服用带有同位素标记的示踪剂，经过代谢后，图像信号反映人体不同部位同位素的浓度分布，显示形态学信息和功能信息。由于病变过程中功能代谢的变化往往发生在形态学改变之前，故核医学成像多被用于癌症等疾病的诊断，具有早期诊断价值。

超声成像：利用超声束扫描人体，对反射信号进行接收、处理，进而获得体内器官图像的原理成像。超声图像显示的是一种“回声图”，超声成像方法常被用来判断脏器的位置、大小、形态，确定病灶的范围和物理性质。

医用内镜：根据光学成像原理成像。医用内镜可以经人体天然孔道或手术小切口进入人体内，导入到将检查或手术的器官，对器官或组织进行光学成像，进而为医生提供疾病诊断的图像信息（见图 2-2）。
医学影像设备在临床各科应用广泛 (见图 2-3)。无论是病情评估、病灶性质判定、手术方案制定，还是治疗后效果评估，医学影像设备都具有决定性作用。各种医学影像设备因为成像原理不同、信息载体不同，其适应范围与诊断特点也各有不同，临床应用上互为补充，不能相互代替。例如：超声诊断适用于腹腔器官成像，而 X 射线只能显示极少的腹部器官；PET 设备对显示早期脑疾较灵敏，但比 MRI 的空间分辨率、组织对比分辨率低；CT 设备对钙化显示敏感，但对软组织对比分辨率较低，而 MRI 设备恰好相反。多种医学影像结合使用，更有利于全面观察病变与周围组织结构的关系，早期发现病变并及时作出定性和定量诊断。
2.2 中国医学影像设备行业发展历程

根据医学影像设备相关技术的进步，中国医学影像设备行业发展至今共经历了 X 射线胶片时代、影像数字化时代和分子影像学时代三大时期（见图 2-4）。

图 2-4 中国医学影像设备行业发展历程

(1) X 射线胶片时代 (1960-1970 年)

医学影像学的发展始于 X 射线技术在医学上的应用。1895 年，X 射线被发现并首次应用于医学领域的人体拍摄、透视。20 世纪 60 年代末期，影像设备学这一学科体系发展较为完善。同一时期，中国的重点大型医院率先引进传统 X 射线设备，并陆续成立放射科。
时至今日，早期引进的设备因技术落后已经逐渐被市场淘汰。

（2） 影像数字化时代（1971-2000 年）

得益于计算机及微电子技术的快速发展，20 世纪 70 年代，医学影像设备进入数字化时代，CT、DR、MRI 等图像更精准、分辨率更高的影像技术诞生。1972 年，全球第一台 CT 面世，CT 的发明是放射诊断学发展史上的巨大进步。70 年代末期，北京医院引进了全国第一台 CT 设备，最早进行 CT 检查。迄今为止，数字化医学影像设备在二级以上（包括二级）医院有较高的渗透率，部分区县级医院也可以开展 CT 检查项目。

（3） 分子影像学时代（2001 年至今）

21 世纪，医学影像设备发展达到了新高度，更高的分辨率、更快的扫描速度、多功能的集成、多种影像设备的融合成为医学影像技术发展的基本趋势。2002 年，波士顿会议上成立了分子影像学学会。2004 年，哈尔滨医科大学和首都医科大学联合主办了首届中国分子影像学高级研讨会。哈尔滨医科大学率先建立医学分子影像研究中心。伴随中国整体医疗水平的提升，分子影像学领域取得了较大的突破。2014 年，中国首台由中科院自动化研究所自主研发的光学分子影像手术导航系统已成功用于乳腺癌临床诊疗。目前，分子影像设备是医学影像领域一大技术革命，也是医学影像未来发展的主导与趋势。

2.3 中国医学影像设备行业市场规模

中国医学影像设备行业市场规模呈现稳定增长的趋势。根据销售端统计，2014-2018 年，中国医学影像设备行业市场规模由 454 亿元增长至 752 亿元，年复合增长率为 13.4%。未来五年，第三方医学影像中心发展、居民支付能力提升、医学影像技术进步将成为驱动行业市场规模扩张的主要原因。在此背景下，整体医学影像设备行业市场规模将以 8.2%的年复合增长率继续增长，到 2023 年，市场规模有望上升至 1113 亿元（见图 2-5）。

图 2-5 中国医学影像设备行业市场规模，2014-2023 年预测
中国医学影像设备行业市场规模持续增长受到以下原因驱动：

（1）第三方医学影像中心催生新机遇：国家颁布一系列政策支持第三方医学影像中心发展。“分级诊疗”制度的实施催生基层医疗机构医学影像服务需求，第三方医学影像中心凭借医生资源与设备优势，可提高基层医疗机构服务水平，基层医疗机构医学影像诊断需求的增加将扩大第三方医学影像中心市场。第三方医学影像中心迅速扩张带来更多医学影像设备的采购与更新需求，进而加速医学影像设备行业规模增长；

（2）收入增长与医保覆盖提升居民支付能力：居民医疗消费能力增强为患者支付医学影像诊疗费用提供物质基础。医保体制的逐步完善减轻了居民医疗消费负担。居民医疗消费绝对支出增加，自付比例下降，有效缓解了“有病不医”的情况，对医学影像服务的需求增加，进而推动了医学影像设备需求增长；

（3）技术进步助力研发制造：技术进步是医学影像设备行业发展的核心驱动力。高端医学影像技术的发展可以满足重大疾病进行超早期诊断的需求。在国家政策支持下，本土企业逐步攻破各项核心技术，在高端医学影像技术上不断取得创新性突破。
2.4 中国医学影像设备行业产业链分析

中国医学影像设备行业的上游市场参与者为核心元器件与非核心元器件供应商；中游环节主体为医学影像设备生产商与经销商；下游涉及各级医疗机构及衍生服务机构（见图 2-6）。

2.4.1 上游分析

中国医学影像设备行业的上游市场参与者为核心元器件、电子配件与线材耗材等非核心元器件供应商。

核心元器件是医学影像设备上游供应链环节中的命脉，其发展情况决定着行业的技术高度。目前，中国大部分医学影像设备生产商均不具备核心元器件自主研发生产能力，各类零部件基本依靠外购自不同厂商，整机生产过程实际为组装集成过程。当核心元器件价格上涨时，将直接增加行业内企业的总体生产成本，缩短盈利空间。因此，是否拥有核心元器件的
自主生产能力以及相对于上游供应商的议价能力成为区分医学影像设备制造企业竞争力强弱的关键。

中国医学影像设备生产商核心元器件主要依赖进口。以 DR、CT、MRI 设备生产商为例，对于 DR 设备而言，X 线球管、平板探测器是其核心元器件，也是成本最高的耗材，约占生产成本的 40%至 60%。平板探测器与 X 线球管国产化痛点，万东属于中国为数不多的核心零部件生产厂商，但产品质量与进口零部件依然存在差距。CT 设备的核心元器件包括 X 线球管、高压发生器、滑环和数据传输、探测器、采集系统等，以上核心部件占 CT 成本构成的 60%以上。中国瑞能医疗掌握 CT 球管研发技术，形成了一整套研发和制造的技术方法，打破了 CT 球管被外资企业垄断的局面，实现了 X 线球管国产化。对于 MRI 设备而言，其核心元器件是超导磁体，超导磁体占据了 MRI 设备成本构成的 30%至 60%。超导磁体因设计特殊、工艺复杂，对生产商有很高的技术门槛及资金门槛。因此，中国一直缺乏高质量的超导磁体供应商，MRI 生产商长期依赖进口。

核心元器件的中国本土生产厂商数量较少，技术不足，主要依赖进口，导致上游核心元器件提供商对中游具有较高的议价能力。中国医学影像设备生产商因大多不具备核心元器件生产能力，与国际巨头相比，毛利率较低，在行业竞争中居于相对劣势地位。

非核心元器件包括电子配件、线材耗材、温控系统等零件，因行业较为分散、集中度低，且市场高度成熟，对整机制造商的影响程度较弱。

2.4.2 下游分析

行业下游涉及各级医疗机构与衍生服务机构。各级医疗机构包括公立医院、民营医院、远程影像平台及独立影像中心。衍生服务机构包括维修托管公司与医疗器械租赁机构。

公立医院是医学影像设备企业的主要客户，线上影像平台及独立影像中心则是未来市场
主要增长力量。

公立医院与民营医院：因医学影像设备造价高，折旧慢，三级公立医院设备更新需求不强，近年来市场趋于饱和。为提升基层医疗卫生服务能力，“分级诊疗”政策在各地的实施将刺激来自基层医疗机构的设备采购需求，具有价格优势的国产制造商将凭借政策红利脱颖而出。同时，在国家鼓励社会办医的背景下，数量保持稳定增长的民营医院急需性价比高的医学影像设备，为本土企业质优价廉的中低端医学影像设备提供了机遇。

独立影像中心：中国优质医疗资源集中于三级医院，分配严重不均，独立影像中心可以实现优质医疗资源的整合分配。受制于政策、成本等因素，部分基层医疗机构没有配置大型医学影像设备的能力，难以满足临床需求。独立影像中心可以减少三级医院负荷，提高基层医疗机构服务能力，解决现阶段中国医学影像服务的痛点，帮助医学影像服务行业快速发展。在政策的鼓励下，独立影像中心迎来发展机遇。现阶段中国独立影像中心市场尚处于初步发展阶段，未来伴随各种慢性病患病率的升高、老年人口数量的增长等因素，市场发展空间广阔。独立影像中心属于重资产模式，需要大量采购医学影像设备，独立影像中心行业的爆发将驱动医学影像设备行业的发展，成为未来中游行业增长的关键因素。

线上影像平台：线上影像平台通过云服务平台提供远程阅片服务，将专家与患者需求对接，同时提供影像诊断、培训、咨询等的线上线下服务。在患者巨大影像检查需求的推动下，依托云计算、大数据等新技术，线上影像平台在近十年内成长迅速。尽管线上影像平台属于轻资产模式，不附带影像设备，但其弥补了大医院影像科人手不足的问题，提高了影像诊断效率，促进了下游市场的消费需求，中游市场将在一定程度上因此受益。

衍生服务机构：近五年来，医学影像设备市场的增长促进了下游服务机构的兴起，相关服务机构陆续衍生出新的服务模式，维修托管公司及医疗器械设备租赁商应运而生。维修托管公司的出现降低了影像设备的整体维修成本，具有取代整机制造商服务模块的趋势；医
疗器械设备租赁商可以帮助解决医疗机构资金短缺的困境。新模式的加入延伸了产业链，隐形增加了中游环节的价值，扩大了整体产业的规模。

3 中国医学影像设备行业驱动因素分析

3.1 第三方医学影像中心催生新机遇

第三方医学影像中心的迅速扩张将增加对医学影像设备的采购与更新需求，进而加速医学影像设备行业的规模增长。

“分级诊疗”是现阶段中国医疗改革的重点方向，由第三方医学影像中心提供高质量的医学影像服务是推动分级诊疗的重要手段。中国医学影像资源匮乏，且存在结构性失衡的问题，第三方医学影像中心作为独立于医院的影像诊断中心，可以有效弥补三级医院影像诊断供不应求、基层医疗机构及私人诊所无力提供影像诊断服务的弊端。基层医疗机构普遍规模小，医学影像设备匮乏。相比大医院，基层医疗机构的 MRI、CT 等高端医学影像设备使用效率不高，高端医学影像设备的购入与更新会加重地方财政负担。第三方医学影像中心的出现，在减轻地方政府财政压力的同时，可以解决基层医疗机构影像设备和服务落后问题，确保实现“大病不出县”，为基层医疗机构留住病人，落实“分级诊疗”。因此，基层医疗机构医学影像诊断需求的增加将进一步扩大第三方医学影像中心市场。

国家大力支持第三方医学影像中心发展。原卫计委先后组织制定了《医学影像诊断中心基本标准（试行）》和《医学影像诊断中心管理规范（试行）》、《国家卫生计生委关于开展医疗联合体建设试点工作的指导意见》等，贯彻落实由国务院颁布的多项文件，积极推动产业落到实处，第三方医学影像中心在政策的指导下开始兴起。与欧美等发达国家与地区相比，中国第三方医学影像中心起步晚，市场渗透率低，可成长空间巨大。根据数据显示，2018 年，中国第三方医学影像市场规模超过 11.6 亿元，未来预计中国第三方医学影像服务市场
将以 23.6% 的年复合增长率高速发展，在 2023 年，市场规模达到 33.8 亿元人民币（见图 3-1）。

图 3-1 中国第三方医学影像中心行业市场规模，2014-2023 年预测

3.2 收入增长与医保覆盖提升支付能力

居民医疗消费能力增强为患者支付医学影像诊疗费用提供物质基础。统计局数据显示，2014 年-2018 年中国居民人均可支配收入从 20,167 元上涨至 28,228 元，年复合增长率为 8.8%，人均消费支出从 14,491 元上涨到 19,853 元，年复合增长率为 8.2%，人均医疗保健消费支出从 1,045 元上涨到 1,685 元，年复合增长率为 12.7%，居民人均医疗保健消费支出占人均消费支出的比重从 7.2% 上涨至 8.5%（见图 3-2）。居民健康意识进一步提升，医疗保健消费的意愿增强。

图 3-2 居民人均可支配收入、人均消费支出与人均医疗保健消费支出，2014-2018 年
中国基本医疗保险的全面覆盖可以提高居民的患病就诊率，有效缓解居民“有病不医”的情况。不同医学影像检查项目收费差异明显（见图 3-3），部分项目，例如 MRI，单次价格较高，患者患病期间可能需要定期反复检查，因此对一些家庭造成经济负担。目前，中国城乡基本医疗保险覆盖率已经稳固在 96%左右，基本实现城乡全覆盖。不同地区医保政策略有差异，目前，核医学检查项目尚未纳入医保，住院期间的大部分 X 线成像、CT、MRI 检查项目均被纳入医保报销范围。伴随医保体制的逐步完善，居民医疗消费绝对支出增加，自付比例下降，减轻了居民医疗消费负担，增加了对医学影像服务的利用。居民可支配收入的不断增长和医疗保险的全面覆盖提高了中国居民对医疗健康的支付水平。健康的经济环境为中国医学影像设备行业的发展提供了有力保证，推动行业在良好的社会环境中不断进步。

图 3-3 部分医学影像检查项目收费

<table>
<thead>
<tr>
<th>项目</th>
<th>DR</th>
<th>CT</th>
<th>MRI</th>
<th>PET-CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>单次检查价格</td>
<td>100</td>
<td>300-500</td>
<td>600-1,000</td>
<td>7,000-10,000</td>
</tr>
</tbody>
</table>
3.3 技术进步助力研发制造

技术进步是医学影像设备行业发展的核心驱动力。高端医学影像技术的发展可以满足重大疾病进行超早期诊断的需求。数据显示，在现代化医院中，约 75%-85% 的治疗信息来源于医学图形和图像，医学影像已经由临床辅助检查手段发展成临床诊断疾病的主要方法。在医学影像核心技术突破的推动下，高性能医学影像设备快速发展，为临床重大疾病的早期诊疗提供有效工具（见图 3-4）。

图 3-4 医学影像技术发展历程

政府设立重点发展项目扶持高端影像设备研发。数字诊疗装备是医疗服务体系建设中的重要装备，是中国医学诊疗技术向早期诊断、精确诊断、微创治疗和精准治疗转型的重要基础。为推动医学影像设备行业的发展，提高中国数字诊疗装备的核心竞争力，2015 年，科技部联合有关部门，共同启动国家重点研发计划“数字诊疗装备”重点专项试点工作，成为中国“十三五”重点研发计划之一。“计划”目的在于加快推进中国医疗器械领域的国产化和创新化转型，将包括多模态分子成像、新型磁共振成像系统、新型计算机断层成像、低剂量 X 射线成像、新一代超声成像、复合内窥镜等医学影像设备在内的，十个医疗器械产品列
为重大战略性产品。政策的推行有利于提高中国医疗器械，尤其是高端影像设备的技术竞争力。

在国家重点研发计划“数字诊疗装备研发”专项支持下，中国开始逐步攻破各项核心技术，在高端医学影像技术上不断取得创新性的突破。目前，中国医学影像设备领域拥有的专利数量为1.6万余件，占全球总量的10%，排名世界第三（日本和美国分别以5万余件和3万余件的专利数量位居世界第一、二位），且专利数量呈现出明显的增长趋势。上海联影成功开发了具有自主知识产权的正电子发射计算机断层显像及核磁共振成像一体化系统（PET-MR），并于2018年8月28日获得国家药品监督管理局颁发的产品注册证，PET-MR是高端医学影像诊断设备领域尖端技术的代表，上海联影成为全球继美国通用电气和德国西门子公司之后，第三个能够生产此类设备的企业。与此同时，以中国科学院深圳先进技术研究院为代表，目前已经建成国家发改委-深圳联合共建的国家高端医学影像技术与装备工程实验室、广东省磁共振与多模影像重点实验室、深圳市磁共振成像重点实验室等系列研究平台，创新性研究成果显著（见图3-5）。

图3-5 深圳先进技术研究院医学影像创新研究成果
4 中国医学影像设备行业制约因素分析

4.1 行业总体研发投入不足，企业竞争力弱

中国医学影像设备行业集中程度低，企业规模小，研发投入金额较少。总体而言，中国医疗器械行业虽已经过 30 年的发展，但企业规模普遍偏小，营业收入金额低，难以满足医疗器械生产企业大量科研投入的资金需求。其中医学影像设备子行业，同样呈现行业集中度低的局面。研发投入是高端医疗设备企业的发展核心，研发投入不足一定程度上会严重制约企业自主创新能力，进而削弱企业的市场竞争力，制约行业的整体发展水平。

中国医学影像设备生产企业目前受资金规模的限制，长期研发资金投入规模较小。以迈瑞医疗为例，迈瑞医疗是中国最大的医疗器械生产商，医学影像业务是公司三大主营业务之一，2018年，迈瑞医疗总营业收入137.1亿元人民币，其中医学影像业务营业收入占总营业收入的26.1%，研发投入超过14亿元人民币。而全球知名医疗器械公司GE、飞利浦、西门子的2018年相关领域销售额分别达到197.8亿美元，181.2亿欧元和134.3亿欧元，研发投入分别为9.9亿美元、17.6亿欧元和12.8亿欧元，中国公司与国际巨头相比差距明显。中国医疗设备企业总体研发投入数额不足，数据显示，中国收入水平最高的22家上市医疗设备企业2018年的研发支出总合计仅为33.2亿元，研发支出占营业收入的平均比例仅为7.8%（见图4-1），研发支出规模与国际知名医疗器械公司差距明显。

图4-1 医疗设备企业研发支出及占比，2018年
表

<table>
<thead>
<tr>
<th>简称</th>
<th>研发支出（万元）</th>
<th>营业收入（万元）</th>
<th>占比</th>
</tr>
</thead>
<tbody>
<tr>
<td>迈瑞医疗</td>
<td>142,013.4</td>
<td>1,375,335.7</td>
<td>10.3%</td>
</tr>
<tr>
<td>新华医疗</td>
<td>12,487.9</td>
<td>1,028,363.9</td>
<td>1.2%</td>
</tr>
<tr>
<td>奥佳华</td>
<td>18,343.3</td>
<td>544,703.1</td>
<td>3.4%</td>
</tr>
<tr>
<td>费艾医疗</td>
<td>15,212.1</td>
<td>418,339.2</td>
<td>3.6%</td>
</tr>
<tr>
<td>荣泰健康</td>
<td>10,875.7</td>
<td>229,564.8</td>
<td>4.7%</td>
</tr>
<tr>
<td>奥美医疗</td>
<td>4,973.9</td>
<td>202,751.2</td>
<td>2.5%</td>
</tr>
<tr>
<td>万荣医疗</td>
<td>4,623.6</td>
<td>163,043.2</td>
<td>2.8%</td>
</tr>
<tr>
<td>三诺生物</td>
<td>16,051.6</td>
<td>155,051.3</td>
<td>10.4%</td>
</tr>
<tr>
<td>开立医疗</td>
<td>23,348.6</td>
<td>122,684.9</td>
<td>19.0%</td>
</tr>
<tr>
<td>和佳股份</td>
<td>7,585.4</td>
<td>119,601.6</td>
<td>6.3%</td>
</tr>
<tr>
<td>健帆生物</td>
<td>4,613.8</td>
<td>101,650.9</td>
<td>4.5%</td>
</tr>
<tr>
<td>理邦仪器</td>
<td>17,787.7</td>
<td>99,272.0</td>
<td>17.9%</td>
</tr>
<tr>
<td>万东医疗</td>
<td>6,954.0</td>
<td>95,453.0</td>
<td>7.3%</td>
</tr>
<tr>
<td>凯利泰</td>
<td>5,584.3</td>
<td>93,090.7</td>
<td>6.0%</td>
</tr>
<tr>
<td>南微医学</td>
<td>4,912.3</td>
<td>92,210.9</td>
<td>5.3%</td>
</tr>
<tr>
<td>宝莱特</td>
<td>4,660.7</td>
<td>81,338.5</td>
<td>5.7%</td>
</tr>
<tr>
<td>乐心医疗</td>
<td>5,640.4</td>
<td>77,510.3</td>
<td>7.3%</td>
</tr>
<tr>
<td>中珠医疗</td>
<td>6,246.1</td>
<td>57,286.1</td>
<td>10.9%</td>
</tr>
<tr>
<td>九安医疗</td>
<td>13,746.8</td>
<td>56,388.0</td>
<td>24.4%</td>
</tr>
<tr>
<td>盈康生命</td>
<td>1,010.7</td>
<td>50,402.4</td>
<td>2.0%</td>
</tr>
<tr>
<td>荣维医疗</td>
<td>2,825.4</td>
<td>30,029.8</td>
<td>9.4%</td>
</tr>
<tr>
<td>爱朋医疗</td>
<td>2,098.3</td>
<td>29,803.4</td>
<td>7.0%</td>
</tr>
<tr>
<td>合计金额</td>
<td>331,595.7</td>
<td>5,223,875.0</td>
<td>-</td>
</tr>
<tr>
<td>平均占比</td>
<td>-</td>
<td>-</td>
<td>7.8%</td>
</tr>
</tbody>
</table>

来源：Wind数据库，头豹研究院编辑整理

4.2 市场准入标准高，国产设备购买动力不足

医学影像设备产品的优劣关系到人类生命健康，因此市场准入门槛高，审批耗时较长。中国对医疗器械产品实行分类管理。医学影像设备主要为 III 类医疗器械，少部分为 II 类医疗器械（见图 4-2），国家对其安全性、有效性进行严格控制。在中国，医学影像设备生产企业必须在国家级药监局办理《医疗器械产品注册证》。设备的上市需要在医疗机构进行临
床试验，经历较长时间的审批流程。除中国外，各国政府对医学影像设备的市场准入均有严格的法规和管理，中国医学影像设备生产商若开拓海外市场，需要满足不同国家与地区当地对医疗器械产品的准入条件。根据美国相关规定，在美国生产和销售的医疗器械产品都必须取得 FDA 注册，企业需要根据 FDA 相关指南提供包括产品测试、临床验证等相关材料以供审查。欧盟国家实行通用的欧盟进口政策，对于医学影像设备等医疗器械产品，需进行 CF 认证。亚洲、非洲、南美等国家也均对进口医疗器械产品有相关的注册认证要求。技术水平较低的医学影像设备生产企业难以取得相关认证，存在市场进入壁垒。

图 4-2 医学影像设备管理标准分类

<table>
<thead>
<tr>
<th>Ⅱ类</th>
<th>Ⅲ类</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 摄影/透射X射线机</td>
<td>• 血管造影X射线机、乳腺X射线机</td>
</tr>
<tr>
<td>• 移动式C形臂X射线机</td>
<td>• 移动式C形臂X射线机（带有数字图像摄影和/或数字减影血管造影功能）</td>
</tr>
<tr>
<td>• 超声（探头经体表、直肠和阴道）</td>
<td>• 超声（经食道、血管内、术中经人体内部组织、和/或用于超声引导等领域）</td>
</tr>
<tr>
<td>• 光学内窥镜（通过自然孔道）</td>
<td>• CT</td>
</tr>
<tr>
<td></td>
<td>• MRI</td>
</tr>
<tr>
<td></td>
<td>• PET、PET-CT、PET-MR</td>
</tr>
</tbody>
</table>

从在医学影像设备销售行业从业超过十年的专家处访谈得知，医疗机构对高端超声设备、CT、MRI、PET-CT 等高端医疗器械的可靠性要求较高，因此，对器械价格相对不敏感的三甲医院在采购高端医疗设备时更信赖传统国际巨头的产品。国际巨头医学影像生产企业凭借技术优势、品牌形象、营销能力占据中国高端医疗器械市场较大市场份额。目前，虽然部分国产自主品牌的创新医疗器械和高端医疗器械已在技术层面与跨国公司产品无显著差异，且在性价比上稍占优势，但总体而言，中国医学影像生产企业仍与国际巨头，如西门子、飞利浦、通用电气等存在较大的技术差异，未形成强有力的品牌效应，从而导致医疗机构对本土
企业品牌医疗器械的购买意愿不强，国产高端医疗器械在三甲医院关键科室的市场份额仍然较小。

5 中国医学影像设备行业相关政策分析

2015年5月，国务院发布了《中国制造2025》（以下简称《纲领》），是中国政府实施制造强国战略的第一个十年行动纲领，提出要提高医疗器械的创新能力和产业化水平，重点发展医学影像设备、医用机器人等高性能诊疗设备，全降解血管支架等高值医用耗材，可穿戴、远程医疗等移动医疗产品，实现生物3D打印、诱导多能干细胞等新技术的突破和应用。《纲领》的提出对本土医学影像设备生产企业的高端化与产业化提供了有力支持。

2016年7月，国务院提出了《中华人民共和国国民经济和社会发展第十三个五年规划纲要》（以下简称《纲要》），《纲要》提出重点研制核医学影像设备、超导磁共振成像系统、无创呼吸机等诊疗设备及换自动生化分析仪、高通量基因测序仪等体外诊断设备。

2017年5月，科技部办公厅发布了《“十三五”医疗器械科技创新专项规划》（以下简称《规划》），提出以国产化、高端化、品牌化、国际化为方向，加强医研企结合，着力提高国产医疗器械的核心竞争力。加速医疗器械产业整体向创新驱动发展的转型，完善医疗器械研发创新链条。目标突破一批前沿关键技术和核心部件，开发一批进口依赖度高、临床需求迫切的高端、主流医疗器械。《规划》的发布与实施有利于解决医学影像设备等高端医疗器械、高值耗材大量依赖进口的问题，鼓励医用高值材料与核心部件实现自主制造。

2017年11月，国家发改委印发了《增强制造业核心竞争力三年行动计划(2018-2020)》（以下简称《行动计划》），提出高端医疗器械和药品是国家重点发展领域，提升中高端医疗器械和药品供给能力，是保障人民群众就医用药需求的重要支撑。《行动计划》重点工作包括：加快高端医疗器械产业化及应用、加快先进金属关键材料产业化、加快先进有机材料关
键技术产业化。《行动计划》的提出有助于推动加速中高端医学影像设备的国产化进程。

2018年4月，国家发改委等8部门联合发布《关于促进首台（套）重大技术装备示范应用的意见》，首台（套）重大技术装备（以下简称“首台套”）指国内实现重大技术突破、拥有知识产权、尚未取得市场业绩的装备产品，包括前三台（套）或批（次）成套设备、整机设备及核心部件、控制系统、基础材料、软件系统等。为保障相关设备能够顺利进入医疗机构，政府要求在采购中优先采购首台（套）创新产品，并明确规定，纳入首台套目录的产品投标时，招标单位不得以不合理条件限制或排斥首台套产品参与投标。多种国产中高端医学影像设备纳入首台（套）重大技术装备推广应用指导目录，首台（套）政策有助于国产设备打开市场，加快国产化替代过程。(见图5-1)。

图 5-1 医学影像设备行业相关政策

<table>
<thead>
<tr>
<th>政策名称</th>
<th>颁布日期</th>
<th>颁布主体</th>
<th>主要内容及影响</th>
</tr>
</thead>
<tbody>
<tr>
<td>《关于促进首台（套）重大技术装备示范应用的意见》</td>
<td>2018-04</td>
<td>发改委等8部委</td>
<td>为保障相关设备能够顺利进入医疗机构。政府要求在采购中优先采购首台套创新产品，并明确规定，纳入首台套目录的产品投标时，招标单位不得以不合理条件限制或排斥首台套产品参与投标。多种国产中高端医学影像设备纳入首台套重大技术装备推广应用指导目录，首台套政策有助于国产设备打开市场，加快国产化替代过程。</td>
</tr>
<tr>
<td>《增强制造业核心竞争力三年行动计划（2018-2020）》</td>
<td>2017-10</td>
<td>国家发改委</td>
<td>高端医疗设备和药品是国家重大发展领域。提升中高端医疗设备和药品供给能力，是保障人民群众健康医疗服务的重要支撑。《行动计划》重点任务包括：加快高端医疗器械产业信息化应用，加快先进金属材料关键材料产业化。加快先进医用材料关键产业化。</td>
</tr>
<tr>
<td>《“十三五”医疗器械科技创新专项规划》</td>
<td>2017-05</td>
<td>科技部办公厅</td>
<td>以国产化、高端化、智能化、国际化为导向，加强政研企结合，着力提高国产医疗器械的核心竞争力。加快医疗器械产业整体向创新驱动发展的转变，完善医疗器械研发创新链条。目标突破一批前沿关键技术及核心部件，开发一批技术先进、性能可靠的高端、主流医疗器械。</td>
</tr>
<tr>
<td>《中华人民共和国国民经济和社会发展第十三个五年规划纲要》</td>
<td>2016-07</td>
<td>国务院</td>
<td>重点研发新医学影像设备，超导磁共振成像系统、无创呼吸机等诊疗设备及移动自动化分析仪、高通量基因测序仪等体外诊断产品。</td>
</tr>
<tr>
<td>《中国制造2025》</td>
<td>2015-05</td>
<td>国务院</td>
<td>提高医疗器械的创新能力和产业化水平，重点发展医学影像设备、医用机器人等高性能诊疗设备，全降解血管支架等高值医用耗材，可穿戴、远程医疗等移动医疗产品，实现生物3D打印、诱导多能干细胞等新技术的突破和应用。</td>
</tr>
</tbody>
</table>

来源：头豹研究院编辑整理
6 中国医学影像设备行业发展趋势分析

6.1 政策推动国产设备占比上升

政策助力医疗器械审批快速通道开启。2018 年 5 月，国家药监局发布了《创新医疗器械特别审批程序（修订稿征求意见稿）》，提出具有核心技术发明专利、国际领先、国内首创、具有显著临床应用价值等情形的医疗器械，可被纳入创新医疗器械特别审批名单。该《意见稿》的发布有利于加快国产创新医学影像设备的审批流程（见图 6-1）。

![图 6- 1 部分纳入创新器械特别审批名单的医学影像设备](image)

<table>
<thead>
<tr>
<th>产品</th>
<th>公司</th>
<th>时间</th>
</tr>
</thead>
<tbody>
<tr>
<td>血管内成像系统</td>
<td>全景恒升（北京）科学技术有限公司</td>
<td>2018.05</td>
</tr>
<tr>
<td>消化道蠕动胶囊系统</td>
<td>上海安翰医疗技术有限公司</td>
<td>2018.03</td>
</tr>
<tr>
<td>数字乳腺X射线摄影系统</td>
<td>上海联影医疗科技有限公司</td>
<td>2018.03</td>
</tr>
<tr>
<td>全数字正电子发射及X射线断层成像扫描系统</td>
<td>武汉锐科数字医学影像科技有限公司</td>
<td>2018.01</td>
</tr>
<tr>
<td>内窥式光学相干断层成像系统</td>
<td>南京微创医学科技股份有限公司</td>
<td>2017.11</td>
</tr>
<tr>
<td>血管内断层成像系统</td>
<td>南京沃福曼医疗科技有限公司</td>
<td>2017.11</td>
</tr>
<tr>
<td>正电子发射断层扫描及磁共振成像系统</td>
<td>上海联影医疗科技有限公司</td>
<td>2017.05</td>
</tr>
<tr>
<td>介入术中磁共振系统</td>
<td>上海爱立普医疗科技有限公司</td>
<td>2017.01</td>
</tr>
<tr>
<td>正电子发射及X射线计算机断层成像装置</td>
<td>明峰医疗系统股份有限公司</td>
<td>2016.05</td>
</tr>
<tr>
<td>用于管腔腔、呼吸道内镜的光学干涉断层成像系统</td>
<td>广东永生达医疗科技有限公司</td>
<td>2016.03</td>
</tr>
<tr>
<td>可变角度双探头单光子发射计算机断层成像设备</td>
<td>北京新华医疗设备有限公司</td>
<td>2016.02</td>
</tr>
<tr>
<td>正电子发射断层成像装置</td>
<td>明峰医疗系统股份有限公司</td>
<td>2015.06</td>
</tr>
<tr>
<td>螺旋CT</td>
<td>科宁（天津）医疗设备有限公司</td>
<td>2014.09</td>
</tr>
</tbody>
</table>

来源：头豹研究院编辑整理

政府设立重点发展项目扶持高端医学影像设备创新研发。2015 年，科技部联合原卫计委、工信部、原食品药品监督总局、原卫生部等部门，共同启动了国家重点研发计划“数字诊疗装备”重点专项试点工作，意在通过重大专项的扶持鼓励医学影像设备生产企业拥有自身核心技术和专利，提升中国医疗器械产业自主研发技术水平。同时，原卫计委公布了优秀国产医疗器械名单，入选企业包括东软、万东、迈瑞等医学影像设备生产重点企业，该名单
的公布为医院购买国产设备提供参考，明确指引了医院国产医学影像设备采购方向。

地方政府在国家政策的引导下，对国产医学影像设备的政策支持与鼓励力度逐渐加强。目前，多地政府在采购文件中明确提出鼓励采购国产设备，限制采购进口产品（见图6-2）。中央与地方政府政策的颁布将加速国产设备对进口设备的替代。未来，在相关政策的支持下，伴随技术的发展，国产医学影像设备有望逐步取代进口产品。

图6-2 支持国产医学影像设备的部地方政策

浙江省，2018年7月
- 浙江省政府在2017年底，浙江省医疗设备类项目采购国产设备（CT、MR）共215台，浙江下一步将重点推动国产高端医用设备采购，为医院和配器用户型大中型医用设备采购配置采购，推动技术升级和产业创新。

广东省，2018年7月
- 广东省卫计委发布《关于鼓励使用国产医疗器械和设备的若干规定》，其中121种医疗器械采购进口产品比例将逐步降低。

四川省，2017年12月
- 四川省卫计委发布《关于进一步加强医疗器械监管工作的通知》，要求严格控制进口产品的使用。

河北省，2016年7月
- 河北省卫计委发布《关于加快转变发展方式的决定》，要求医疗机构优先采购国产设备。

来源：头豹研究院编辑整理

6.2 盈利受限下生产商业务向产业链下游拓展

医学影像设备下游服务市场仍旧是一片蓝海，成长性极强。未来，相关企业将不断向产业链下游拓展。中医学影像设备行业在医保控费等政策的压力下，盈利空间受到压缩。器械设备厂商利用其在影像技术、远程影像平台建设以及医院医生资源等方面的优势，积极向产业下游延伸，通过进入远程影像诊断与第三方医学影像中心领域提供诊断服务，有利于扩大业务面、提升盈利水平。
目前，基层医疗服务机构大多没有配备 MRI、PET-CT 等高端影像设备。三级公立医院凭借着优质的医疗服务质量和齐全先进的医疗设备，成为患者就医的首选。同时，由于单台医学影像诊断设备投入巨大、安全性要求严格、医保控费压力增加等原因，三级公立医院的医学影像设备供给增加困难，在一定程度上限制了公立医院的检查量（见图 6-3）。以上因素导致三甲医院病人过于集中，医学影像检查等待时间过长，病情诊断延误可能性增加，在此背景下，远程影像诊断与第三方影像中心应运而生。

图 6-3 三甲医院医学影像诊断痛点

远程影像诊断领域市场空间广阔。远程影像诊断能够明显改善中国的医学影像诊断行业存在诸多痛点: (1) 提高基层医疗机构和边远地区的影像诊断水平，缓解医疗资源分配不均；(2) 节省就诊时间，降低医疗费用；(3) 降低医院投入成本，增加供给；(4) 远程影像诊断还可加强医生之间的分享交流，提升整体医疗水平（见图 6-4）。在此背景下，远程影像诊断具有广阔的发展前景。企业看到了远程影像诊断广阔的市场空间，努力提升技术和完善数据库建设，克服现有问题。伴随着技术的不断升级以及数据的不断积累，远程影像诊断将进一步发展壮大。

图 6-4 远程医学影像诊断对传统医学影像诊断的提升与改善
第三方影像中心由于专业的服务性，以及优质的设备配备率，能够为患者提供高端医学影像检查服务，有效解决了现阶段的行业痛点，发展空间巨大。在美国，约有40%的医学影像诊断服务由第三方影像中心提供。在中国，第三方医学影像中心行业尚处于发展初期，市场集中度较低。近两年，在政策的支持下，中国第三方影像中心发展迅速，一方面通过引进优质的影像科医师加入，形成专业的服务团队，同时投入高端医学影像设备，为优质的诊断服务提供基础，另一方面持续夯实品牌建设，提升病人的信任度，从而提升竞争力，成为三甲医院的有效补充，预计到2022年，第三方医学影像中心市场规模便可达到1089.5亿元人民币。”

6.3 人工智能助力产业升级

人工智能医学影像是指人工智能技术具体在医学影像诊断上的应用，人工智能医学影像市场是人工智能医疗应用领域的第二大细分市场。医疗行业数据量迅速增长，加速了人工智能医学影像的产品技术优化，推动人工智能医学影像行业的升级，由于人工智能可在数据中进行复杂模式的识别，并以自动化方式提供定量评估，人工智能医学影像在临床工作流程中，
可为医生提供辅助，有助于形成更准确的放射学评估。基于技术类别，人工智能在医学影像领域衍生出两大基础应用：（1）数据感知：通过图像识别技术对医学影像进行分析，获取有效信息；（2）数据训练：通过深度学习海量的影像数据和临床诊断数据，不断对模型进行训练，促使其掌握诊断能力。人工智能医学影像对比传统医学影像的优势明显（见图6-5），因此产品面世早期，广受各级医疗机构青睐。医生对人工智能医学影像设备的使用需求不断提升，人工智能医学影像行业因此发展前景广阔。

图6-5 人工智能医学影像相较于传统医学影像的优势

<table>
<thead>
<tr>
<th>人工阅片</th>
<th>人工智能阅片</th>
</tr>
</thead>
<tbody>
<tr>
<td>阅片时间</td>
<td>较短，人工智能可快速完成初筛</td>
</tr>
<tr>
<td>准确率</td>
<td>医生根据经验挑选重点区域观察，而机器可以完整观察整张片</td>
</tr>
<tr>
<td>客观性</td>
<td>较为客观</td>
</tr>
<tr>
<td>信息利用度高</td>
<td>信息利用度高</td>
</tr>
<tr>
<td>重复性高</td>
<td>重复性高</td>
</tr>
<tr>
<td>无遗漏</td>
<td>无遗漏</td>
</tr>
<tr>
<td>记忆力</td>
<td>知识经验传承度高</td>
</tr>
<tr>
<td>知识经验传承困难</td>
<td>知识经验传承困难</td>
</tr>
<tr>
<td>成本</td>
<td>省时、成本低</td>
</tr>
</tbody>
</table>

目前，中国有超过百家企业将人工智能应用于医疗领域。人工智能医疗应用领域中，医学影像的投资金额最高、投资轮次最多，应用最成熟的热门领域（见图6-6），但中国尚未有III类器械人工智能产品获批，产品大多停留在申报阶段，产品应用领域主要集中在CT（肺结节）、眼底彩照（糖尿病视网膜病变）等。未来，资本市场对人工智能医学影像的高度认可与大力支持，将会加速相关技术成熟与应用场景落地，助推医学影像设备产业转型升级。

报告编号[19RI0742]
图 6-6 人工智能医学影像融资状况

<table>
<thead>
<tr>
<th>公司名称</th>
<th>主要业务/产品</th>
<th>金额</th>
<th>批次</th>
<th>投资方</th>
</tr>
</thead>
<tbody>
<tr>
<td>宽远智能</td>
<td>医疗影像AI辅助诊断</td>
<td>3千万人民币</td>
<td>天使轮</td>
<td>力合创投、启赋资本</td>
</tr>
<tr>
<td>依图科技</td>
<td>医疗影像AI辅助诊断</td>
<td>5000万人民币</td>
<td>A轮</td>
<td>君联资本、IDG资本、启明创投、高瓴资本</td>
</tr>
<tr>
<td>汇医惠影</td>
<td>医疗影像AI辅助诊断</td>
<td>1.5亿人民币</td>
<td>B轮</td>
<td>君联资本、君联资本、联新资本、君联资本等</td>
</tr>
<tr>
<td>聚想科技</td>
<td>医疗影像AI辅助诊断</td>
<td>数千万人民币</td>
<td>C轮</td>
<td>君联资本、君联资本、元生资本、红杉资本、启明创投</td>
</tr>
<tr>
<td>医械科技</td>
<td>医疗影像AI辅助诊断</td>
<td>3亿人民币</td>
<td>C轮</td>
<td>启明创投、君联资本、君联资本、元生资本、红杉资本、启明创投</td>
</tr>
<tr>
<td>依图科技</td>
<td>医疗影像AI辅助诊断</td>
<td>2亿美元</td>
<td>C+轮</td>
<td>君联资本、君联资本、元生资本、红杉资本、启明创投</td>
</tr>
</tbody>
</table>

来源：头豹研究院编辑整理

7 中国医学影像设备行业竞争格局分析

7.1 中国医学影像设备行业竞争格局概述

中国医疗器械产业总体起步于欧美发达国家与地区，尤其在高端医疗设备技术领域，缺乏自主知识产权，致使中国医疗器械产业总体落后于欧美发达国家与地区十年以上。中国医学影像整体技术体系及核心部件的国产化程度较低，临床高端医疗设备绝大部分依赖进口，以德国西门子、美国通用电气及荷兰飞利浦为首的三家国际厂商凭借强大的研发能力垄断了中国的中高端医学影像设备市场，三家累计份额占比超过80%。从在医学影像设备销售行业从业超过十年的专家访谈处得知，国际巨头以高毛利反哺营销与渠道，利用品牌影响力锁定高端客户的购买需求，形成竞争优势。而中国现有的医学影像设备企业自主创新能力不足，产品缺乏国际竞争力，主要依靠价格及渠道优势占据中低端市场。

尽管国际巨头依靠高端产品份额优势一直保持着较高的毛利水平，但因医学影像设备折旧时限长，一线城市高端市场已经接近饱和，导致国际巨头营收增速放缓。在“分级诊疗”制度的推行下，医疗资源有效下沉，基层医疗机构与民营医院的建立与完善提升了医学影像设备中低端市场的采购需求，医学影像设备生产商正积极抢夺二、三线城市中低端市场份额。
中国技术相对成熟的厂商如万东医疗、东软医疗等，在政策的支持下，有望凭借价格优势，把握住基层与民营医疗机构的采购、更新需求，快速抢占市场的份额（见图 7-1）。

图 7-1 医学影像设备各细分领域概况

来源：头豹研究院编辑整理

图中内容包括:
- X 射线设备
- CT
- MRI
- PET-CT
- 超声诊断
- 内镜

（1）在 X 射线设备方面：

伴随科技的发展，X 射线成像设备由传统胶片向数字化影像系统转变。DR 因成像效果好，成像效率高、速度快等优势，已经在临床应用上取代了 CR 和传统 X 线机。DR 产品技术壁垒在医学影像设备中相对较低，国产 DR 处于中低端水平，进口 DR 垄断高端市场。高端动态 DR 产品价格在 100-130 万之间，普通 DR 产品价格在 30 万左右，一、二级医院和民营医院因对价格更加敏感，是国产 DR 的主要市场，进口 DR 以三级医院为主要市场。目前，DR 市场国产化率超过 70%，销售规模保持稳定。中国 DR 厂商数量众多，规模普遍偏小，万东是中国 DR 领军企业，安健、联影紧随其后。

国产 DSA 在中国市场渗透率较低，进口产品比重高达 90%以上。DSA 属于高端医学影像设备，技术壁垒高，整机价格高达数百万，部分机型单价高达千万，有 DSA 购买能力的医疗机构数量有限。DSA 市场基本被美国通用、飞利浦、西门子垄断，中国仅有万东医疗、乐普装备、TCL 三家公司有 DSA 生产能力，但技术水平与进口产品相比仍有较大差距。
（2）在 CT 方面：

国产 CT 市场份额不足 40%，国产品牌仍以中低端产品为主。国产厂商 CT 配置以 16 排及以下中低端产品为主，国产产品价格在 400 万以下，而 16 排 CT 进口产品价格在 400-500 万之间，国产厂商凭借价格优势在中低端 CT 市场超过 70%的份额。64 排 CT 市场主要参与者为美国通用、飞利浦、西门子、东芝等进口厂商，国产厂商数量少，仅有东软、联影等；64 排以上 CT 市场由国际巨头主导。目前，本土 CT 设备生产商正积极发展高排 CT，不断缩小与进口设备的技术差距，未来，国产设备有望突破进口设备的垄断。

（3）在 MRI 方面：

MRI 设备的全球市场发展趋势是向着高场强和低场强两级化发展，一方面向更高场强的超导 MRI 迈进，另一方面永磁低场 MRI 的技术愈发完善，图像质量和功能不断提高。高场强市场主要由跨国公司占据，尤其是超导磁体掌握在少数发达国家手中。超导磁体均匀性与稳定性更高，磁场场强高，一般为 1.5T 和 3.0T，但采购成本和运行成本也更高。全球市场上，超导 MRI 逐渐成为了主流产品，超导 MRI 以西门子、GE、德州仪器、日立等公司产品为主，中国市场以 1.5T 产品为主，50%以上市场份额被国际巨头占据，本土技术领先企业，如联影、朗润，成长迅速。3.0T 产品单价在 1,500 万以上，在中国市场保有量占比不超过 20%，且采购需经过政府机关批准。低场强产品中的中低端市场已经完成国产化替代，但永磁性 MRI 成像质量不高，成长性较低。

（4）在核医学方面：

目前，核医学市场由国际厂商主导，联影是本土企业的领先者。PET-CT 属于高端医学影像设备，单机价格基本在 1,000 万以上，采购客户主要为大型三甲医院，市场总体渗透率低。在中国，PET-CT 产品市场仍以进口产品为主，联影先后推出 86 环 PET-CT、112 环 PET-CT 和 84 环 PET-CT，打破了中国 PET-CT 市场完全依赖进口的格局。PET-MR 由于
技术难度较高，上市产品数量较少，已上市产品主要用于临床研究。目前为止，仅有美国通用、西门子、飞利浦、联影、大基康明有PET-MR产品推出。

（5）在超声诊断方面：

中国超声诊断设备市场的高端产品依然由通用电气医疗、飞利浦、西门子医疗等跨国企业所主导，国产设备利用高性价比优势及渠道优势迅速占领基层市场。三大巨头产品性能优越，占据中国市场总体份额的60%以上。中国医用超声诊断设备中低端市场主要由迈瑞医疗、开立医疗、汕头超声等主导，产品逐步向高端市场延伸。专家普遍认可国产超声在灰阶图像方面已经达到国际先进水平，能够满足超过90%的临床需求，但在高端彩超领域仍然与进口产品存在差距，无法满足超级三甲医院科研与数据分析目的。在医疗器械国产化趋势的推动下，伴随本土企业技术水平的进一步提高，国产品牌将在国内市场逐步扩大市场份额，部分从事细分产品和“人工智能+超声”产品开发的企业，将会在竞争中展露优势。

（6）在内镜方面：

内镜市场总体集中度较高，日企占据超过90%的市场份额。在中国，软镜与硬镜的国产化程度均比较低，整体市场进口替代空间巨大。在软镜领域，奥林巴斯、富士、宾得三巨头占据了90%以上的市场份额，中国企业在中低端市场较为集中，较为成熟的企业有上海医光、开立医疗、上海奥华等，国产软镜的客户群体主要集中于二级及二级以下医院，市场份额小。在硬镜领域，市场主要由德企与日企主导，合计占据85%以上的市场份额。本土企业市场份额低于10%。本土硬镜主要生产厂商有沈阳沈大、天松等。国产产品在操作性与实用性上与进口产品仍然存在技术差距。
7.2 中国医学影像设备行业投资企业推荐

7.2.1 上海联影医疗科技有限公司

(1) 公司简介

上海联影医疗科技有限公司（以下简称“上海联影”）成立于2010年，是专业研发、生产与销售全线高端医学影像设备的创新公司。上海联影自主研发生产覆盖影像诊断和治疗全过程的高端医疗产品，并提供创新的医疗信息化解决方案。

(2) 主要产品

上海联影的主要产品包括：高端医学影像诊断产品、精准放疗产品以及“U+”互联网医疗解决方案等。高端医学影像诊断产品涵盖分子影像、磁共振、计算机断层扫描仪、X射线产品等，精准放疗产品为放疗（RT）设备，“U+”互联网医疗融合互联网、云计算、人工智能、大数据分析等技术，实现医疗资源云端共享与大数据深度挖掘应用，提供医疗信息化、智能化解决方案（见图7-2）。

图7-2 上海联影主要产品

(3) 竞争优势
① 研发优势

上海联影不断推进产学研医间协同合作。目前，上海联影与全球近100家临床及科研机构展开合作，探索临床、科研前沿领域（见图7-3）。

图7-3 上海联影与高校合作项目

来源：公司官网，头豹研究院编辑整理

② 国际布局

上海联影在美国休斯顿、克利夫兰和康科德分别成立了3个研发中心，专注于MR、PET-CT、CT、RT等产品的研发和前沿技术探索。公司在休斯顿打造集研发、生产、市场销售于一体的美国区域总部，坐落于休斯顿的全资工厂也启动建设。原西门子医疗全球战略、业务拓展及市场高级副总裁Jeffrey Bundy正式出任联影美国营销团队CEO。

7.2.2 东软医疗系统有限公司

（1）公司简介

东软医疗系统有限公司（以下简称“东软医疗”）成立于1998年，总部位于沈阳，是中国大型高端医疗设备生产商。东软医疗成功研制具有中国自主知识产权的CT、MRI、
数字 X 线机、彩超以及核医学成像设备等系列产品，并提供基于影像云平台覆盖放射影像、常规检查、放疗与核医学三大领域的全面医疗解决方案。

(2) 主要产品

东软医疗全线产品通过了 ISO9001 国际质量体系认证，其中 CT、MRI、X 线机、超声、PET-CT 等主要产品还相继通过了美国 FDA 和欧洲 CE 认证。公司成功研制出具有中国自主知识产权的 CT、MRI、PET-CT、影像云等产品，提供放射影像、常规检查、放疗与核医学、临床应用等解决方案。此外，东软医疗还能够提供精确放射治疗解决方案、实验室自动化系统解决方案，以及影像云等全系列产品（见图 7-4）。

图 7- 4 东软医疗主要产品

![图 7- 4 东软医疗主要产品](source:company website, Tchef Research Institute)

(3) 竞争优势

① 提供全面解决方案

东软医疗基于各类影像设备为客户提供全面解决方案，不仅将设备和影像结合，也将医院信息共享，让资源得到合理配置。东软医疗派出专业团队参与县级中心和区域级医疗发展，打造设备齐全、特色突出的区域专业化影像中心。公司希望通过影像设备的布局与互联互通，
实现集中诊断、统一质控、远程会诊、远程培训，为广大基层医疗机构和偏远地区提供远程
培训和人工智能辅助诊断

② 全球化布局

为提高国产医疗设备的竞争力，东软医疗与以色列•中国私募股权公司联合成立投资基金，用于扶持在中国运营的以色列医疗器械公司。2000 年，公司的 CT 设备首次出口海外，成为中国第一家进行大型医疗设备出口的公司。2003 年，东软医疗的螺旋 CT 设备首次出口美国。截至 2017 年底，东软医疗的产品覆盖了全球 9,000 多家医疗机构，其中包括 3,000 余家海外医疗机构。

7.2.3 推想科技有限公司

（1）公司简介

推想科技有限公司（以下简称“推想科技”），2016年成立于北京，是人工智能医学影像诊断系统服务商，应用深度学习技术为医学影像辅助筛查提供快捷、准确的解决方案。推想科技自主研发了智能医学影像系统 INFERVISION，应用场景覆盖 X 线、CT、MRI、超声、病理影像等领域。2017年，推想科技在日本、美国分别成立分公司。2018年，推想科技又一分公司在德国成立，完成了北美、亚太以及欧洲的战略布局，并陆续拓展全球更多区域。

（2）主要产品

推想科技自成立以来，利用深度学习技术分析 DR、CT 及 MRI 等医学影像数据，为医生提供精准、高效的辅助工具。推想科技的核心产品包括：InferRead™ CT 肺部疾病解决方案、InferRead™ DR 胸部疾病解决方案、InferRead™ CT 脑卒中解决方案、InferRead™ CT 骨疾病解决方案、InferRead® Mammo 乳腺疾病智能解决方案、InferRead® DR 儿童生长发育智能解决方案、InferScholar™ AI 学者科研平台，以及 InferSight® 影像大数据智
能分析平台（见图 7-5）。

图 7-5 推想科技主要产品

来源：公司官网、头豹研究院编辑整理

（3）竞争优势

① 深耕临床场景需求

在技术发展逐渐成熟的背景下，推想科技逐步深入临床应用场景，挖掘医生人工智能医学影像的使用需求，使产品融入医生日常的诊断路径，实现与现有医疗器械的深入整合，推动产品的优化升级，提升产品的使用率。推想科技的产品凭借其优异的易用性和适用性，已得到医生和院方的广泛认可。

② 人才优势

推想科技创始人、CEO陈宽曾就读于芝加哥大学，先后师从Gary Becker、Robert Fogel、James Heckman、Lars Hansen四位诺贝尔奖得主，攻读金融学预测模型与智能化建模专业，并荣获经济学与金融学双博士学位。推想科技联合创始人、CTO翁黄硕羽，曾任美国Amazon后台软件工程师、研究员，负责Amazon EC2和S3云系统的后端软硬件开发部署，曾参与美国UCLA医院精准医疗建模项目。
头豹研究院简介

头豹研究院是中国大陆地区首家B2B模式人工智能技术的互联网商业咨询平台，已形成集行业研究、政企咨询、产业规划、会展会议行业服务等业务为一体的一站式行业服务体系，整合多方资源，致力于为用户提供最专业、最完整、最省时的行业和企业数据库服务，帮助用户实现知识共建，产权共享。

公司致力于以优质商业资源共享为基础，利用大数据、区块链和人工智能等技术，围绕产业焦点、热点问题，基于丰富案例和海量数据，通过开放合作的研究平台，汇集各界智慧，推动产业健康、有序、可持续发展。

四大核心服务：

企业服务
为企业提供定制化报告服务、管理咨询、战略调整等服务

云研究院服务
提供行业分析师外派驻场服务，平台数据库、报告库及内部研究团队提供技术支持服务

行业排名、展会宣传
行业峰会策划、奖项评选、行业白皮书等服务

园区规划、产业规划
地方产业规划、园区企业孵化服务
报告阅读渠道

头豹科技创新网 —— www.leadleo.com PC端阅读全行业、千本研报

详情请咨询

客服电话
400-072-5588

上海
王先生：13611634866
李女士：13061967127

南京
杨先生：13120628075
唐先生：18014813521

深圳
李先生：18916233114
李女士：18049912451